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The problem of error in deconvolution 

A. F, JONES? and D. L. MISELLIS 
i. Department of Mechanics, The Johns Hopkins University, Baltimore, 
Maryland 21218, U.S.A. 
8 J. J. Thomson Physical Laboratory, University of Reading, Reading, Berkshire, 
England 
MS. receiced 2nd April 1970 

Abstract. The subject of this paper is the solution of the convolution integral, 
which relates the observed line profile to the true profile which is obtained in the 
absence of instrumental resolution effects. In the case of perfectly accurate 
data this problem has (by assumption) a well-defined solution. This paper 
considers the practical problem that results when the experimental curve is 
subject to error. Estimates are given for the importance of the error and a 
criterion is developed for optimizing the deconvolution procedure. This leads 
to a deconvolution function which when convoluted with the experimental 
curve gives the true solution. Finally the method of solution by iteration is 
examined and the effect of error upon it studied. 

1. Introduction 

as the convolution integral, occurs : 
Frequently in experimental physics, and elsewhere, the following integral, known 

m 

g(x) = 1 f ( u )  S (x -U)  du. 
- m  

The functionf(x) represents a spectrum of some kind which depends on a one- 
dimensional variable x and it is this spectrum that one is attempting to measure. 
True values for the spectrum are not found, however, because of the presence of dis- 
tortion. This usually takes the form of resolution effects in the recording instrument 
(as in, for example, spectroscopy, optics and electron optics). Instead of measuring 
f ( x )  one obtains an experimental curve g(x), which is a weighted average of the true 
curve. Equation (1) defines this averaging mathematically, where S(x) is the weight- 
ing function (or instrument broadening function) for the particular experiment being 
considered ; S(x) is usually a quantity that can be determined experimentally (see, 
for example, Stokes 1948). 

With S(x) known, the task that one very often faces is to deconvolute the experi- 
mental curve g(x) and hence obtain the true function f ( x )  that would be observed in 
the absence of instrument resolution effects. Because the convolution integral occurs 
so frequently, a very large number of papers have been published in the literature 
which, directly or indirectly, involve this problem (e.g. Burger and van Cittert 1932, 
1933, Fellgett and Schmeidler 1952, Burr 1955, Skarsgard et al. 1961, Morrison 1963, 
Jones et al. 1967, Berreman 1968, Louer et  al. 1969). However, the number of 
distinct methods of solution that they contain appears quite limited. We shall now 
briefly enumerate and describe these methods. 

The first and commonest method of solution is by iteration (e.g. Burger and van 
Cittert 1932, 1933, Skarsgard et al. 1961, Rollett and Higgs 1962, Khidir and Decius 

5 Present address: Department of Physics, Queen Elizabeth College, Campden Hill Road, 
London W8, England. 
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1962, Jones et al. 1967, Ergun 1968). The experimental curve g(x) is taken as an 
initial approximation to f ( x )  and a scheme is set up to continuously improve the 
approximation; details of this method are discussed in 4 4. Normally only three or 
four iterations are recommended since it is observed empirically that the solution 
begins to diverge if more are attempted. The  second method is by the use of a Fourier 
transform (e.g. Smith 1934, Stokes 1948, Rollett and Higgs 1962); this changes 
equation (1) into an algebraic equation which is easily solved for At), the Fourier 
transform of f ( x ) .  The final solution for f ( x )  is then obtained by an inverse Fourier 
transform. Whilst this solution is ideally exact, it has practical drawbacks, namely 
(i) one only has values forg(x) over a finite (not an infinite) range of x, (ii) transforms 
are laborious to calculate numerically, (iii) noise on the experimental profile g(x) 
produces high-frequency oscillations on the Fourier transform g( t )  and, (iv) f ( t )  is 
all too often given by an expression which has zeros in its divisor for large values of t. 
An extension of this second method attempts to avoid some of these difficulties; the 
ideal Fourier transform solution is inverted to obtain an expression which involves 
the original functions f ( x )  and S(x) more directly (e.g. Hardy and Young 1949, 
Allen et al. 1964, Sauder 1966, Jones and Misell 1967, Berreman 1968). A third 
method is one which recognizes that it is only a finite range over which g(x) is deter- 
mined. A Fourier series expansion thus replaces the Fourier transform. Truncation 
of the series leads to a set of algebraic equations which can be solved to yield a solution 
(e.g. Moore 1968). Another method in quite common use is the representation of 
g(x)  and S(x) by suitable analytic functions ; the convolution integral is then solved 
explicitly, by Fourier inversion, to givef(x) (e.g. Shull 1946, Schoening et al. 1952, 
Ruland 1965, 1968, Saksena et al. 1968). This method of solution forf(x) is rather 
limited in that the line shapes for both g(x) and S(x )  must be explicitly given; many 
line profiles defy curve fitting by simple analytic expressions. An alternative way of 
writing down the convolution integral, when g(x) is known at a series of points, is as 
a set of linear equations and this set of equations is solved by matrix inversion, for 
f ( x )  (e.g. Paterson 1950, Louer et al. 1969). The  use of Hermite polynomials, as an 
alternative to Fourier series, for g(x)  and S(x) has been used to give an explicit 
solution for f ( x )  in terms of the coefficients of the Hermite polynomials (e.g. Berry 
1947, Hossfeld 1968). However, it should be pointed out that the representation of 
g(x) as a sum of Hermite polynomials is not of general application; the actual line 
shape for g(x) is a critical factor in the success of this method. Finally, the method of 
moments in which S(x) is represented as a polynomial expansion gives a solution for 
f(x) in terms of the moments of g(x) (e.g. Flynn and Seymour 1960, Eastabrook and 
Wilson 1952, Young et al. 1967, Sauder 1966); a source of error in the solution for 
f ( x )  is due to the unpredictable behaviour of the higher-order moments of g(x), when 
g(x) is subject to errors. 

All these methods have one feature in common; some form of approximation is 
always made. In  fact, a simple argument quickly demonstrates that an approximation 
is a necessary part of a method of solution and that in general equation (1) need not 
have any solution at all. The  argument is as follows: The  effect of the averaging 
described by the convolution integral is to smooth out any irregularities, or roughness, 
in the original curvef(x). Only if  some very large irregularities exist inf(x) would any 
roughness still be visible in the experimental curve g(x). Unfortunately, g(x) always 
contains some small rough variations, which do not actually originate from f ( x )  but 
are the effects of random background noise. However, unless one can distinguish 
between the true experimental curve and the noise, the irregularities can only be 
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interpreted as very large (but spurious) variations in the original distribution f ( x ) .  
Furthermore, if g(x) is sufficiently rough, the corresponding variations in f ( x )  are 
indefinitely large, and indeed, examples can be constructed where it can be shown 
that there is no solution at all of the convolution integral, e.g. if S(x )  = sin axjx its 
Fourier transform S(t) is zero for It1 > a, which yields a contradiction if g(x) is 
allowed to be general function. So we may conclude that equation (1) cannot neces- 
sarily be inverted at all. 

Such arguments as the above, whilst correct, represent extremes. For example, 
suppose we make the not unrealistic assumption that f ( x )  is piecewise analytic whilst 
S(x) is a Gaussian distribution. It then follows that g(x) is an analytic function. 
Moreover, one of the properties of an analytic function is that its value, over the 
complete range of the variable x, can be determined from knowledge of its value over 
an indefinitely small range of x (the property of analytic continuation). Thus we 
are led to conclude that it should be possible to determinef(x) from a knowledge of 
g(x) over any indefinitely small range of x. The fallacy here is clear: we are applying 
the mathematical formula (1) to real situations without any regard to the practical 
limitations that one is subject to in real life. In  particular, the amount of information 
that can be gleaned from an empirical curve is severely limited and the above argument 
implicitly assumes that the values of the curveg(x) can be read to any specified degree 
of accuracy at all points of x. 

Similarly we cannot conclude that there exists no practical deconvolution method 
by which equation (1) can be solved to give f ( x ) .  Although a strict mathematical 
solution appears forbidden, the correlation between the mathematics and reality has 
always to be kept in mind; and so we have the problem of optimal-deconvolution, 
i.e. the determination of the maximum amount of information that can be extracted 
from a realistic curve g(x) about the true curvef(x) and some knowledge concerning 
the accuracy of this information. These problems, although of importance, have not 
been given much attention previously in the literature. Even in this paper we shall 
not be examining the full problem because of all the difficulties involved. Instead, a 
partly idealized situation is considered, namely, we assume that the experimental 
curve, which includes the true convoluted curve plus a small amount of random noise, 
is known, in principle, exactly over the complete range of x, - CO < x < CO. We 
then try to ascertain how much of this information is relevant to the determination 

It is relevant to point out that this model makes several important and interrelated 
approximations. The most unrealistic of these is that g(x) is known at all points x. 
In  practice, deconvolution is always attempted from a much more limited amount 
of data (typically 30-70 readings for a one-dimensional curve). We are assuming that 
we have far more information about the curve than is actually the case. Further, it 
is not possible to take readings from the curve g(x) with 100% accuracy as we are 
assuming. This last point is not too important, since we can always attribute any 
error in the readings to additional background noise, although this interpretation 
partly obscures a problem that does exist, namely, the question of at what intervals of 
x should readings of the experimental curve be taken. Clearly they should not be too 
far apart or information is lost but it is not clear what can be gained by taking readings 
indefinitely close together. Lastly it is over a finite, not an infinite, range of x that 
g(x) is determined. Theoretically this may seem unimportant (see the argument on 
analytic continuation earlier) but in practice, owing to the restriction of describing 
g(x) by a finite number of points, it means that less information is known about f ( x )  

Off(4  ( §  2). 
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near the end points of the range than elsewhere. This fact is always reflected in the 
results of 'laboratory tests' on the methods of solution described earlier. When a curve 
g(x), for which the true spectrum f(x) is known for comparison purposes, is decon- 
voluted, the answer always has its maximum variance from the true answer near the 
end points of the range. No theoretical estimate for the magnitude of this variance 
has been proposed, however. 

0 3 of this paper describes a deconvolution function, which replaces S(x) in 
the convolution integral, equation (1). This function M ( x )  allows for the effects 
of errors in g(x) and it is proposed that M(x)  gives an optimum solution for f ( x ) .  
We also discuss the optimization of the solution for f(x) for two specific methods of 
deconvolution, namely Fourier transforms ( 0  3 )  and iterative procedures (4 4). 
Whilst for illustrative purposes we have used Gaussian profiles for S(x) and g(x), the 
equations derived, relating to the optimization of f(x), are of a general applicability. 

2. True information contained by an experimental curve 
The arguments that follow rest largely on the physical interpretation of the 

Fourier transform and so we present here a brief review of the relevant points we shall 
be using. The  Fourier transform for a function F(x)  is defined by 

F(x)  exp( - itx) dx s", F(t)  = 

and its inverse transform by 
.3) 

F ( x )  = -!- E(t) exp(ifx) dt. 
2T - - c c  

The Fourier transform can be regarded as the limit of a Fourier series when the range 
over which it is applied becomes infinite. With this interpretation, the integral (2) 
defines a coeflcient F(t) while the integral ( 3 )  defines a summation of harmonics 
exp(it,x) for various values of to. These harmonics are weighted by the factor 
F(to)/277 and then equation ( 3 )  indicates that the sum of all these harmonics, weighted 
in this fashion, is equal to the original function F(x) .  However, since the range of x 
is infinite, there is a continuous range of values for to  instead of a discrete set and then 
equation ( 3 )  is written not as a summation but as its limiting form, an integral. 

Taking the Fourier transform of equation (1) gives 

since, as is well known, the convolution integral becomes a product in transform 
space (see e.g. Stokes 1948). Consider now the interpretation of this equation; g(t) 
represents the components of the harmonics which comprise the experimental curve 
g(x), whileJ(t) represents the components of the harmonics which comprise the theor- 
etical curvef(x). j ( t )  andf(t) are related by a modification factor s( t ) ,  which multiplies 
f(t) to make it equal to g ( t ) .  Thus g(x) contains the same harmonics asf(x) but in an 
altered ratio, altered in fact in proportion to s ( t ) .  

I n  order to demonstrate the significance of this, suppose S(x) is a normalized 
Gaussian profile, i.e. 

0: 
S(x) = - exp( - xzxz)  

T l Q  
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so that 
2 

~ ( t )  = expi-") 
4 2  

and further let the percentage noise in the experimental curve g(x) be .yo (by which 
we mean that the root-mean-square of the noise, or instrument error, is vyo of the 
maximum value of the true experimental curve). Then if we make the assumption 
that the percentage noise in the transformed experimental curve g(t)  is also vyb (see 
below), it can be seen that there is a limit to the amount of useful information con- 
tained in g(t) about the desired transform curve f(t). For imagine that g(x) has been 
measured in some experiment and its Fourier transform obtained, then all the values 
of g ( t )  for t greater than some t ,  would be less than the value that we are allowing for 
the noise. This is because f ( t )  is the value of the theoretical curvef(t) after multi- 
plication by the exponential factor of equation (6) and, if t ,  is selected to be sufficiently 
large, this product can be made indefinitely small. Thus for high harmonics the true 
information contained in g( t )  (and hence the original g(x)) is less than the misinforma- 
tion contained about the noise, and values of g(t)  for It1 > t* cannot be depended on, 

Looking at this in another way, the inversion of equation (4) yields 

where 

Thus if we insist on attaching importance to the high harmonics, i.e. assume the 
values of g(t) are correct for large t ,  then we obtain an erroneous end result, since we 
are obliged to multiply g( t )  by an exponentially large factor, which raises the noise to 
an intolerable level. (This, incidentally, is the reason that all methods of deconvolution 
require some form of approximation, or smoothing of the original data, to obtain the 
solution. An exact solution, if it exists, would be dominated by the noise and so noise 
has to be reduced in importance by some procedure.) We conclude that there exists 
a cut-off frequency t ,  beyond which g(x) contains no reliable information about the 
harmonic components of f(x). This is not meant to imply that the data for jtj < t ,  
are perfect; the noise is still present and causes some uncertainty in this region, The  
point is that for ltl > t,, the uncertainty approaches 100% and, if not corrected for, 
this uncertainty leads to large, spurious variations in the correct solution. 

The  value of t ,  will depend on the particular experiment and the exact forms of 
S(x) and g(x). Three possible cases can be distinguished: (i) f ( x )  varies slowly in 
comparison with S(x), (ii) f(x) varies over a length scale comparable with the length 
scale of S(x), and (iii) f ( x )  varies quickly in comparison with S(x). I n  the first of 
these cases, the transform off(x) will decrease sharply to zero in comparison with the 
transform of S(x) and so the noise level (i.e. the fraction ./loo) is reached primarily 
as a result of the decrease in the value off(t) and not because s(t) has become small. 
I n  this case there is no essential loss of information owing to convolution. (There is 
always some loss of information about f ( x )  because of the presence of noise in g(x) ; 
the distinction here is whether additional information has been lost because of the 
convolution effect or whether the same amount of information would be lost if the 
experiment could be reproduced with the same noise present but without any con- 
volution.) Case (iii) is the converse of this situation. s(t) is a much sharper function 
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thanf(t) and as a result the convolution of f ( x )  with S(x) to form g(x) causes sub- 
stantial loss of information about the higher harmonics ofsf(%). Since in this case g(x) 
does not contain the information to regeneratef(x) accurately, there is no point in trying 
to deconvolute g(x); one can only attempt to improve the experimental equipment. 
Case (ii) is the transition state between these two extremes. There is some loss of 
information about f(x), since the product f(t) . s(t) reaches the noise level more 
quickly thanfjt) would do alone. On the other hand, one can agree to accept this loss 
and derive an answer which is an approximation tof(x). An important point to note, 
however, is that cases (ii) and (iii) cannot be distinguished from each other by experi- 
ment; in case (iii), g(x) will contain no high harmonics since they are eliminated by 
convolution of f(x) with S(x) and thusg(x) will vary on a length scale comparable with 
the length scale of S(x). However, this is also the characteristic which defines case (ii). 
Thus a deconvolution, when the length scales of g(x) and S(x) are similar, should be 
attempted only if one can be sure by other means that one is dealing with case (ii) and 
not case (iii). Even then, one risks the loss of the finer details inf(x). 

We consider now the convolution problem, where the value of the cut-off is 
determined only by g(x). For simplicity, we first consider a g(x) which is a Gaussian 
distribution centred on x = 0, i.e. 

and 
g(x) = A exp( - P 2 x 2 )  

We can define the cut-off point as the value of t when j ( t )  decreases to the noise 
level, Our assumption that the error ing(t) is the same as that ing(x), i.e. v/lOO, then 
yields t, = 2P{ln (100 /~ )}~’~ .  However, since the definition of t ,  is somewhat arbitrary 
and also since reasonable changes in v do not alter the value of t* greatly, it is con- 
venient to assume v N 5 (say) and so obtain the simpler equation t* N 4P. In  this 
case, t, is directly related to the halfwidth of the experimental function H ,  by 
t, = 8(ln2)1’2/H, or 

L C  
U . J  

t, v --. 
H ,  

While this relation has been derived for a particular functional form (equation (8)), 
it can be seen that a similar cut-off criterion can be obtained in the general case for 
g(x) that are likely to be encountered in practice. The  argument then rests on order- 
of-magnitude considerations ; when taking the Fourier transform of g(x), the positive 
and negative parts of the integral will largely cancel if exp( - itx) oscillates sufficiently 
quickly compared with g(x). If we let the dividing line be the point when exp( - itx) 
oscillates through a complete period over the halfwidth of g(x), we again obtain a 
similar result to equation (lo), approximating 2n E 6.3. It should be emphasized, 
however, that this is only a convenient estimate for tk. In  practice the value of t* 
depends on the individual experiment and the numerical factor in (10) should be 
altered to suitably reflect the accuracy of the experiment and the particular form of 

In  order to obtain an estimate of the information lost because of the convolution 
effect, we again take equations (5) and (8) as typical functions. Then 
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and it can be seen that the useful range in g ( t )  is less than that of f(t) by a factor of 
jl{(1/,B2)-(1/~z)}1’z or, if jl < E ,  

fractional decrease in the useful range o f t  (12) 
where Hs = halfwidth of S(x). 

‘ H ,  
z 1-6 (:I2 =; 1 -$(z) 

3. A deconvolution function 
In  order to counter the problem of high-harmonic noise ing(x), T(t)  in the decon- 

volution expression (7) should be replaced by another function R(t), which is equal 
to T(t)  for It1 < t ,  but is defined in the remaining range in such a way as to reduce the 
importance of the noise. Hence we define 

Then 
30 

f(x) = 1.1 g(t) R(t) exp(itx) dt 
27T - m  

or replacing f ( t )  from its definition equation (2) as a Fourier transform and reversing 
the order of integration, we obtain 

5: m 

f ( x )  = g(u) du 1 R(t) exp(it(x - 1 1 ) )  dt. (15) 
* - 0 3  277 - 0 3  

So if we can evaluate 
I ,m 

M(x)  = R(t) exp(itx) dt 
277 -a 

then equation (15) is an expression forf(x) as a convolution, i.e. 
30 

f ( x )  = 1 g(u) M(x - U) dzi, 

This function can be computed and once obtained 
volution function for the particular weighting function 
For example, if S(x) is the Gaussian equation (5), 

- m  

can be used as a decon- 
S(x) under consideration. 

M(x) = -!- exp($) exp(itx) dt 
277 - t ,  

1 
277 

- - - t x  1;: exp($ T z )  exp(it,xT) dT.  

However, because of the discontinuity in the function R(t), M ( x )  will behave as 
sin x/x for large x and so the convergence of equation (17) will be slow. Thus it is 
better to smooth out this discontinuity and define 

R(t) = ($ 
where U(t)  is defined so as to make R(t) continuous zt t = t ,  with its first n derivatives, 
and such that U(t) -+ 0 as t --f a. M(x)  wiil then behave as sin ~ / x ” + ~  for large x 



The problem of ewoY in deconvolution 469 

and convergence will be improved. For the Gaussian equation (5), we may choose 
n = 1 for example and define (matching the value and first differential a t  t = t*) 

Note that since we have no reliable information about harmonics beyond t = t,, 
it is as correct to choose U(t)  = 0 as it is to select U(t)  as any other bounded function. 
The  noise problem we are attempting to eliminate results from allowing U(t)  to be 
unbounded, which magnifies the noise beyond proportion. 

These arguments hold for any weighting function S(x) for which the Fourier 
transform can be obtained. The  function M ( x )  defined by equations (16) and (18) 
can always be derived as a set of numerical values and then used in equation (17) 
as a universal deconvolution function. I t  is obviously preferable if the Fourier 
transform of S(x) can be found analytically but, even if S(x) is only known numeri- 
cally, this method of solution would be preferable to the original method of solving the 
convolution integral with S(x); R(t) has only to be calculated once and then de- 
convolution involves only a single set of integrations (instead of two sets or more 
by solving the original convolution integral (1) by Fourier transforms), while the 
importance' of the high-harmonic noise is automatically reduced. 

4. Analysis of the iterative method 
Since a very common method of solution of the convolution integral is by iteration, 

we present an analysis of the method. Solution by iteration is normally attempted by 
defining 

and 
fi(4 = g(x> (21) 

f n  + 1 ( x )  = .fn(x) - f n ( x )  *S(x) (22) 
where the * indicates the convolution of f n ( x )  with S(x). 

that if it does, the solution is unique and thusf,(x) +f(x) .  
We shall determine the criterion for this iterative scheme to converge and show 

By induction, one can show 
r = n - 1  

. fn (x> = g(x> + A x >  2 (1 -*S(x)Ir (23) 
r = l  

or taking Fourier transforms of both sides of equation (23), 

Summing the series on the right-hand side of equation (24) gives 

s ( t ) f n ( t >  = i ( t )  - f ( t ) ( l -  s(t>In* (25 1 
If now one assumes that solution to the original convolution problem exists, and 
furthermore that the solution is unique, then f n ( x )  +f(t), i.e. f n (x )  + f (x )  (except 
perhaps at a few discrete points, which we assume is irrelevant for practical problems) 
as n --f a3 if and only if 

(I-S(t)}" -+O as n -+ CO 
i.e. 
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As is known, however, for a practical solution of the convolution problem, high- 
harmonic noise must be eliminated. Thus if equation (25) has heuristic convergence, 
then we must have that 

Although this criterion for convergence is not widely known, circumstances are 
such that most authors, who have used this method of deconvolution, in the past have 
satisfied it. This is because it is conventional to use a normalized weighting function 
when dec'onvoluting, i.e. 

;c 

S ( X )  dx = 1. i, 
Thus it follows that s(0) = 1 and consequently in the immediate vicinity of 

t = 0, (1 - S(t)) is always small. Thus (1 - S(t))" --f 0 for It1 < t ,  if t ,  is sufficiently 
small. The  other requirement that (1 - S(t))" -+- 1 for large t is a consequence of the 
fact that s(t) is by nature small for large t. Thus if n is not selected to be too large 
(i.e. n < l /S(t)) ,  m-e have 

(1 - S(t)}. w 1 - n S ( t )  

for large t ,  and so equation (25) reduces to 

fn(4 = nin(t )  

for that region of t. Thus fn(x) contains the erroneous high-harmonics of g,(x) 
multiplied by the factor n. This is not necessarily disastrous (unlike exact deconvolu- 
tion when they are amplified many times-see 4 3), but nevertheless it is an undesir- 
able feature of the method and one should attempt to restrict the number of iterations 
i( = n - 1) to a minimum. Indeed, that the method diverges if too many iterations 
are attempted is well known from empirical work (Khidir and Decius 1962, Jones et al. 
1967, Ergun 1968, Jones and Misell-unpublished). 

The criterion that establishes the minimum number of iterations that are necessary 
to generate the solution again can be derived from equation (25). I t  is that (1 - S(t)>" 
must be less than the experimental error, in the range of useful information in g(x), 
i.e. 

V 
(1 -S(t)}" < -- for all It/ < t ,  

100 

or if we assume that the imaginary part of s(t) is negligible while the real part is 
monotonic decreasing either side of t = 0 in the relevant range (which is true for a 
symmetric S(x)), then 

I n  

S(t*) > 1- 

Since t ,  is inversely proportional to the halfwidth H ,  ofg(x) and since s(t) varies on a 
scale inversely proportional to the halfwidth W, of S(x) ,  equation (28) relates the 
minimum number of iterations necessary to the ratio of the halfwidths of g(x)  and 
S(x)  when they are Gaussians. Unfortunately, the numerical values in the relation- 
ship depend on the form of s(t) and so it is difficult to generalize further. However, 
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for any individual experiment, S(t.) can actually be computed and then used to 
determine the minimum value for the number of iterations. For the Gaussian 
distributions equations (5) and (S), one obtains the results shown in table 1. 

Table 1. The minimum number of iterations i required to solve the 
convolution integral for various ratios between the halfwidths of the 
experimental curve g(x) and the broadening function S(x) when they 

are both Gaussian profiles and the experimental error v = 2. 

Minimum number of 
iterations, i 

Ratio of the halfwidths 
of g(x )  and S(x) 

i = O  
i = l  
i = 2  
i = 3  

5. Conclusions 
The intentions of this paper are: 
(i) T o  draw attention to the fact that limits exist to the application of deconvolu- 

tion in the resolution of spectra, and to try and indicate under what conditions one 
might reasonably hope to obtain a solution and under what conditions one should 
concentrate on improvement of the experimental equipment. There are, in fact, 
methods of deconvolution described in the literature which imply that details can be 
resolved in the spectrum on a length scale much less than that of the instrument 
function. This is misleading, however, since this can only be achieved in laboratory 
tests which use theoretical curves whose values are indefinitely accurate. 

(ii) When deconvolution is permissible, to try to assess the accuracy with which it 
can be achieved. 

( E )  T o  present an optimized method of deconvolution (which takes account of 
experimental error) in the ideal case where the experimental curve is known for all 
values of x. 

(iv) To stimulate, we hope, further research in this area. The  principal problem 
now seems to be how the knowledge of the experimental curve over only a finite 
instead of infinite range affects the solution. 
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